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Abstract. Glauber dynamics of the Sherrington–Kirkpatrick spin-glass model in the high-
temperature phase is studied using theory and computer simulations. The theoretical approach
follows the spirit of Mori’s continuous fraction expansion. Its predictions agree very well with
the computer simulation results.

1. Introduction

The dynamical properties of the Sherrington–Kirkpatrick (SK) spin-glass model [1] have
been a subject of continuous interest in recent years [2, 3]. Most of the theoretical studies
considered Langevin dynamics of the soft-spin version of the SK model [4–6]. The soft-
spin version, while showing very interesting dynamical properties [6], lacks the original
motivation of the SK model: neither its statics nor its dynamics is exactly solvable. The
results are obtained perturbatively with respect to the four-spin coupling constantu. To
recover the Ising limit one has to letu approach infinity. In practice, this procedure allows
one to analyse the long-time asymptotic behaviour of the spin correlations. It is not well
suited to study the time dependence for all times (even forT > Tc) or to calculate the
so-called absolute frequency scale.

Glauber dynamics of the hard-spin version of the SK model has been analysed in the
original SK paper [1] and in other early spin-glass publications [7]. These works used an
ad hocmethod to introduce a dynamical version of the Onsager reaction field term into the
equations of motion. A more systematic approach was started by Sommers [8]. However,
his method was criticized by Lusakowski [9] and its validity is uncertain. Recently a novel
approach to Glauber dynamics of spin glasses has been proposed by Coolen, Sherrington
et al [10, 11]. The simple version of their theory [10] describes very well the order parameter
flow direction above the de Almeida–Thouless (AT) [12] line but misses theslowing down
which sets in when the former line is approached from above. The more advanced version
[11] agrees well with the simulation data for short times but it remains to be seen whether
it predicts divergent relaxation times at and below the AT line. In another interesting recent
study Nishimori and Yamana [13] analysed Glauber dynamics of the SK model via a high-
temperature expansion. Their method has an obvious virtue of a systematic expansion in a
small parameter. However, it cannot be applied near or below the spin-glass transition.

The original motivation for the work presented here was to improve upon the simple
CS theory [10]. Briefly, we have noticed that the simple CS theory is quite similar in
spirit to the Enskog kinetic theory of hard sphere fluids [14]. We expected that by using
kinetic theory techniques we might be able to incorporate divergence of the relaxation times
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into the CS theory. It turned out that a more efficient way to proceed was to depart from
one of the ingredients of the CS theory: while CS derive equations of motion for sample-
averaged quantities we postpone sample averaging until after the equations of motion are
solved. It should be emphasized that in all other respects our zeroth-order approximation
follows the spirit of the Enskog theory (and that of the simple CS theory). In the first-order
approximation we include terms that would be analogous to ring and repeated ring terms in
the kinetic theory.

Because we are dealing with sample-dependent quantities the structure of our theory is
more complicated than that of the CS theory. Therefore we restrict ourselves to studying
time-dependent spin correlationsin equilibrium.

Elsewhere we have presented a derivation that parallels closely the kinetic theory
analysis [15]. This approach seems feasible only in the high-temperature regime. In order
to analyse the low-temperature dynamics we have reformulated the theory in the spirit
of Mori’s [16] continuous fraction expansion. Here we present a derivation of the basic
equations and an application to the high-temperature phase. In the following paper [17] we
analyse dynamics in the low-temperature phase.

2. Theory

2.1. Definitions

The hard-spin SK model consists of Ising spinsσi = ±1 interacting via infinite-range
exchange coupling constantsJij ,

H = −
∑
i<j

Jij σiσj . (1)

The coupling constantsJij are quenched random variables distributed according to the
symmetric distributionP(Jij ) ∼ exp(−J 2

ij /(2J
2/N)).

The time-dependent spin–spin correlations can be written in the following form:

〈δσi(t)δσj 〉eq= 〈δσi exp(�t)δσj 〉eq. (2)

Here δσi is the fluctuation of the value of theith local spin,δσi = σi − 〈σi〉eq and 〈· · ·〉eq

denotes the equilibrium ensemble average with the Boltzmann distribution,

〈· · ·〉eq≡
∑
σ1,σ2,...

. . . Peq Peq∼ exp(−βH). (3)

Finally, � is the evolution operator

� = −
∑
i

(1− Si)wi (4)

with Si being the spin–flip operator,Siσi = −σi , andwi being the transition rate

wi = (1− σi tanh(βhi))/2 (5)

wherehi is a local magnetic field acting on theith spin

hi =
∑
j 6=i

Jij σj . (6)

Note that in equation (2) the equilibrium probability distributionPeq stands to the right of
the quantity being averaged and the evolution operator exp(�t) acts on everything to its
right (including the probability distribution).
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2.2. Zeroth-order approximation

To calculate the time-dependent spin–spin correlation function we follow the spirit of Mori’s
[16] continuous fraction expansion. In the zeroth-order approximation we restrict ourselves
to the subspace spanned by the spin fluctuations. We define a projection operator on this
subspace

P0f (σ1, σ2, . . .) =
∑
ij

δσiAij 〈δσjf (σ1, σ2, . . .)〉eq. (7)

Here the matrixA is the inverse matrix of spin correlations that is defined by the following
equation: ∑

j

Aij 〈δσj δσk〉eq= δik. (8)

Note thatA is equal to the Hessian of the TAP [18] free energy. At and aboveTc A is
known explicitly [19, 2]:

Aij = −βJij + δij (1+ (βJ )2). (9)

We start by writing down a formal expression for the time derivative of the spin–spin
correlations

∂t 〈δσi(t)δσj 〉eq= 〈δσi� exp(�t)δσj 〉eq. (10)

Next, we insert into it the identity operator written as a sum of the projectionP0 and the
orthogonal projectionQ0 = I − P0

〈δσi� exp(�t)δσj 〉eq= 〈δσi�(P0+Q0) exp(�t)δσj 〉eq. (11)

In the zeroth-order approximation we neglect the contribution involvingQ0. Then, using
the definition of the projection operatorP0 we get

∂t 〈δσi(t)δσj 〉eq=
∑
kl

〈δσi�δσk〉eqAkl〈δσl(t)δσj 〉eq. (12)

Finally, using the explicit form of the evolution operator we rewrite the above result in the
following way:

∂t 〈δσi(t)δσj 〉eq= −(1− 〈σi tanh(βhi)〉eq)
∑
l

Ail〈δσl(t)δσj 〉eq. (13)

This equation is equivalent to a disorder-dependent version of the local equilibrium
approximation of Kawasaki [20]. It is identical to the evolution equation obtained from
the zeroth-order kinetic theory [15].

One sees immediately that the evolution equation (12) with the Hessian (9) is almost
identical to that derived in the original SK paper [1]. It should be emphasized, however,
that a dynamical version of the Onsager reaction field term has been naturally included in
the matrixA.

Straightforward calculation shows that the sample-averaged solution of (12) has the
same form as the sample-averaged solution of the SK equation if the timescale of SK is
rescaled by a factor

τ = 1/(1− 〈tanh(βh)σ 〉eq). (14)

Here the overline denotes the ‘spatial average’:f = (1/N)∑i fi . Explicitly, we find

[〈δσi(t)δσi(0)〉eq] = 2

π

∫ 1

−1
dx

(1− x2)1/2

1+ (βJ )2− 2βJx
exp

(
−(1+ (βJ )2− 2βJx)

t

τ

)
. (15)
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Here [. . .] denotes sample averaging over the probability distributionP(Jij ). Note that in
order to get the above result we have used the usual approximation that the eigenvectors of
the Hessian are uncorrelated.

As discussed by SK [1] the formula (15) leads to the algebraict−1/2 decay of the spin
correlations at the transition temperatureTc = J . Note that the prefactor of thet−1/2 term
is different from that predicted by SK.

The factor (14) can be calculated using the probability distribution of the local fields
calculated in [21]. Explicitly, we get

τ−1 = 1− [〈tanh2(βh)〉eq]

= 1− 1

J
√

2π

∫ ∞
−∞

dh tanh2(βh) cosh(βh) exp(−β2J 2/2− h2/2J 2). (16)

Note that here we have implicitly used the usual approximation of replacing the spatial
average by the sample average.

We will compare the theoretical prediction (15) with the simulations in section 4. Here
we only note that atT = Tc numerical integration givesτ ≈ 2.2242 which roughly
corresponds to the discrepancy between the original SK result (equation (15) withτ = 1 or
equation (5.27) of [1]) and the simulation data they presented (figure 13(c) of [1]).

Finally, it should be noticed here that the zeroth-order approximation is exact at short
times. More precisely, equation (13) reproduces exactly the first time-derivative of the spin
correlations att = 0. This is of course analogous to the simple CS theory being exact at
short times.

2.3. First-order approximation

In order to go beyond the zeroth-order theory we first use the standard projection operator
manipulations [22] in order to rewrite the exact evolution equation (11) in the following
way:∫ t

0

∑
j

(δij δ(t − t ′)+M irr
ij (t − t ′)〈1− σj tanh(βhj )〉−1

eq )∂t ′ 〈δσj (t ′)δσk〉eq

= − 〈1− σi tanh(βhi)〉eq

∑
l

Ail〈δσl(t)δσj 〉eq. (17)

HereM irr is the irreducible [22] memory matrix

M irr
ij (t) = 〈Di exp(Q0�

irrQ0t)Dj 〉eq (18)

with Di defined as

Di = −Q0(σi − tanh(βhi)) (19)

and�irr is the irreducible part of the evolution operator,

�irr = �−
∑
ij

�δσi〉eq[〈δσi�δσj 〉eq]
−1〈δσj�. (20)

Di can be interpreted as thepart of the time derivativeof the ith spin fluctuation that is
orthogonal to all the spin fluctuations. To this end we have to define a conjugate evolution
operator�∗

�∗ = −
∑
i

wi(1− Si) (21)
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that acts on the spin variables, and then we check that the time derivative ofδσi is given
by the following expression:

∂tδσi = �∗δσi = −(σi − tanh(βhi)). (22)

It should be emphasized here that the formal manipulations leading to the evolution
equation (17) have a simple physical interpretation [22]: the irreducible memory matrix
renormalizes theinverse rateof spin flips.

In the zeroth-order approximation we neglected the renormalization of the inverse rate
completely. In the next step (first-order approximation) we include it approximately. To
this end we first define a projection operator on the subspace spanned byDi

P1f (σ1, σ2, . . .) =
∑
ij

DiCij 〈Djf (σ1, σ2, . . .)〉eq. (23)

HereC is the inverse matrix of the correlations of the projected time derivatives∑
j

Cij 〈DjDk〉eq= δik. (24)

Next, we write down a formal expression for the time derivative of the memory function
and insert into it the identity operator written as a sum of the projectionP1 and the orthogonal
projectionQ1 = I − P1

∂tM
irr
ij (t) = 〈DiQ0�

irrQ0 exp(Q0�
irrQ0t)Dj 〉eq

= 〈DiQ0�
irrQ0(P1+Q1) exp(Q0�

irrQ0t)Dj 〉eq. (25)

In the first-order approximation we neglect the contribution involvingQ1

∂tM
irr
ij (t) ≈ 〈DiQ0�

irrQ0P1 exp(Q0�
irrQ0t)Dj 〉eq. (26)

Then, using the definition of the projection operatorP1, we get

∂tM
irr
ij (t) =

∑
kl

〈DiQ0�
irrQ0Dk〉eqCklM

irr
kj (t). (27)

At this point we note that in the high-temperature limit the off-diagonal equilibrium
correlations betweenirreducible quantities (i.e. quantities that have spin correlations
subtracted out) are of higher order inN−1/2 than the spin–spin correlations. This can
be easily shown by a high-temperature expansion.

Moreover, it can also be shown that the off-diagonal part of the memory matrix evolution
operator〈DiQ0�

irrQ0Dj 〉eq, i 6= j , can be neglected in the thermodynamic limit. Hence,
only the diagonal part

〈DiQ0�
irrQ0Di〉eq= −(βJ )2〈1− tanh2(βh)〉eq(〈tanh4(βhi)〉eq− 〈tanh2(βhi)〉2eq) (28)

is relevant.
Finally we see that in the first-order approximation only the diagonal elements of the

memory matrix contribute and, moreover, that their time evolution is given by

∂tM
irr
ii (t) = 〈DiQ0�

irrQ0Di〉eqCiiM
irr
ii (t) (29)

where

M irr
ii (t = 0) = C−1

ii = 〈1− tanh2(βhi)〉eq(1− Aii〈1− tanh2(βhi)〉eq). (30)

Equations (17) and (29) with (28) and (30) constitute our first-order approximation.
In the high-temperature regime it is actually possible to go beyond the first-order
approximation. The structure of the theory remains the same: at any higher order level
a new (diagonal) irreducible memory matrix appears.
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It should be noted here that one should not expect any divergence of the memory
function relaxation time at the transition temperature:〈DiQ0�

irrQ0Di〉eq stays positive and
Cii does not approach 0 asT → Tc.

To get explicit results from the first-order approximation we have to solve a system of
equations (17) and (29). In the high-temperature phase wepre-averageequation (29) to get

∂tM irr(t) = 〈DQ0�irrQ0D〉eq C M irr(t) (31)

with

M irr(t = 0) = 〈1− tanh2(βh)〉eq(1− (1+ (βJ )2)〈1− tanh2(βh)〉eq) (32)

and then we use the pre-averaged irreducible memory function in equation (17). The main
argument for the pre-averaging is analytical simplicity. However, we expect that in the
high-temperature phase pre-averaging should be justifiable.

Equations (17) and (31) can be easily solved. We find that the first-order approximation
results in a minute correction of the zeroth-order one. This fact could have been anticipated:
numerical integration using the local field distribution of [21] shows that at the transition
temperatureM irr(t = 0) ≈ 0.045.

3. Computer simulations

We performed a series of Glauber dynamics simulations of the SK model at temperatures
2Tc, 1.5Tc, 1.25Tc, andTc using the algorithm of Mackenzie and Young [23]. Above the
transition temperature we used equilibration times varying between 100 Monte Carlo steps
per spin (MCS) at 2Tc and 200 MCS at 1.25Tc. At the transition temperature we used
very long equilibration time of 10000 MCS. We used sample sizes ofN = 3000: at each
temperature we simulated 100 samples.

After equilibrating the system we collected the data for the time-dependent spin–spin
correlation function

[〈σi(t)σi(0)〉eq] = (1/N)
∑
i

〈σi(t)σi(0)〉eq (33)

and for its time derivative, i.e. for the following correlation function:

d

dt
[〈σi(t)σi(0)〉eq] = (1/N)

∑
i

〈(tanh(βhi(t))− σi(t))σi(0)〉eq. (34)

We monitored the derivative independently having in mind the low-temperature phase: in
contrast to the correlation function the derivative decays to zero even in the low-temperature
phase.

4. Results and discussion

In figure 1 we compare time-dependent spin correlations calculated from the first-order
theory with the results of the computer simulations. On the scale of the figure the predictions
of the zeroth-order theory are indistinguishable from those of the first order.

In figure 2 we compare the time derivative of the spin correlations calculated from the
first-order theory with the results of the computer simulations. Again, on the scale of the
figure the predictions of the zeroth-order theory are indistinguishable from those of the first
order.
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Figure 1. Time-dependent spin–spin correlation function as a function of time. Symbols:
Glauber dynamics simulation data; squares:T = 2Tc; circles: T = 1.5Tc; triangles:
T = 1.25Tc; crosses:T = Tc. Solid lines: predictions of the first-order theory.

Figure 2. Time derivative of the spin–spin correlation function. Symbols: Glauber dynamics
simulation data; squares:T = 2Tc; circles: T = 1.5Tc; triangles:T = 1.25Tc; crosses:T = Tc.
Solid lines: predictions of the first-order theory.

Qualitatively and quantitatively there is perfect agreement between the theory and
simulations. It should be emphasized here that it is the first time such an agreement has
been achieved for the time-dependent spin correlations, even in the high-temperature phase.

It should also be realized that in spite of this quantitative agreement the first-order theory
is not exact. There is an infinite number of higher-order irreducible memory functions and
we do not have any argument that would allow us to neglect them. In this regard it
seems that, even in the high-temperature phase, dynamics of the SK model is much more
complicated than its equilibrium properties.

Finally, we would like to comment on the relation between our theory and the simple
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CS approach [10]. CS, in effect, use alocal in time closure hypothesis in the evolution
equations for the sample-averaged quantities. If we were to derive an equation of motion
for the sample averaged spin–spin correlation function from the zeroth-order approximation
(equation (13)), our closure approximation would benon-local in time. Hence, we do not
disagree with the main CS assumption that (certain) dynamic quantities are self-averaging
and therefore it should be possible to derive equations of motion that would involve sample-
averaged quantities only. On the other hand, we suspect that these equations of motion might
be non-local in time. One should note at this point that the equations of motion for the
time-dependent correlations that are derived in the soft-spin approach are, in fact, non-local
in time.
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